Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nat Commun ; 14(1): 8491, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123592

RESUMEN

Chimeric antigen receptor (CAR)-T therapy requires autologous T lymphocytes from cancer patients, a process that is both costly and complex. Universal CAR-T cell treatment from allogeneic sources can overcome this limitation but is impeded by graft-versus-host disease (GvHD) and host versus-graft rejection (HvGR). Here, we introduce a mutated calcineurin subunit A (CNA) and a CD19-specific CAR into the T cell receptor α constant (TRAC) locus to generate cells that are resistant to the widely used immunosuppressant, cyclosporine A (CsA). These immunosuppressant-resistant universal (IRU) CAR-T cells display improved effector function in vitro and anti-tumour efficacy in a leukemia xenograft mouse model in the presence of CsA, compared with CAR-T cells carrying wild-type CNA. Moreover, IRU CAR-T cells retain effector function in vitro and in vivo in the presence of both allogeneic T cells and CsA. Lastly, CsA withdrawal restores HvGR, acting as a safety switch that can eliminate IRU CAR-T cells. These findings demonstrate the efficacy of CsA-resistant CAR-T cells as a universal, 'off-the-shelf' treatment option.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Animales , Ratones , Ciclosporina/farmacología , Células Alogénicas , Inmunosupresores/farmacología
2.
J Immunol ; 211(11): 1623-1629, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850969

RESUMEN

Transplantation and cancer expose the immune system to neoantigens, including immunogenic (dominant and subdominant) and nonimmunogenic Ags with varying quantities and affinities of immunodominant peptides. Conceptually, immunity is believed to mainly target dominant Ags when subdominant or nondominant Ags are linked within the same cell due to T cell interference. This phenomenon is called immunodominance. However, our previous study in mice showed that linked nonimmunogenic Ags (OVA and GFP) containing immunodominant peptides mount immunity irrespective of the MHC-matched allogeneic cell's immunogenicity. Consequently, we further explored 1) under what circumstances does the congenic marker CD45.1 provoke immunity in CD45.2 mice, and 2) whether linking two dominant or subdominant Ags can instigate an immune response. Our observations showed that CD45.1 (or CD45.2), when connected to low-immunogenic cell types is presented as an immunogen, which contrasts with its outcome when linked to high-immunogenic cell types. Moreover, we found that both dominant and subdominant Ags are presented as immunogens when linked in environments with lower immunogenic thresholds. These findings challenge the existing perception that immunity is predominantly elicited against dominant Ags when linked to subdominant or nondominant Ags. This study takes a fundamental step toward understanding the nuanced relationship between immunogenic and nonimmunogenic Ags, potentially opening new avenues for comprehending cancer immunoediting and enhancing the conversion of cold tumors with low immunogenicity into responsive hot tumors.


Asunto(s)
Neoplasias , Linfocitos T Citotóxicos , Ratones , Animales , Células Alogénicas , Péptidos , Epítopos Inmunodominantes , Ratones Endogámicos C57BL
3.
Cancer Sci ; 114(11): 4172-4183, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37675556

RESUMEN

Adoptive immunotherapy using genetically engineered patient-derived lymphocytes to express tumor-reactive receptors is a promising treatment for malignancy. However, utilization of autologous T cells in this therapy limits the quality of gene-engineered T cells, thereby inhibiting the timely infusion of the cells into patients. In this study, we evaluated the anti-tumor efficacy and the potential to induce graft-versus-host disease (GVHD) in T cell receptor (TCR) gene-engineered allogeneic T cells that downregulate the endogenous TCR and HLA class I molecules with the aim of developing an "off-the-shelf" cell product with expanded application of genetically engineered T cells. We transduced human lymphocytes with a high-affinity TCR specific to the cancer/testis antigen NY-ESO-1 using a novel retrovirus vector with siRNAs specific to the endogenous TCR (siTCR vector). These T cells showed reduced expression of endogenous TCR and minimized reactivity to allogeneic cells in vitro. In non-obese diabetic/SCID/γcnull mice, TCR gene-transduced T cells induced tumor regression without development of GVHD. A lentivirus-based CRISPR/Cas9 system targeting ß-2 microglobulin in TCR gene-modified T cells silenced the HLA class I expression and prevented allogeneic CD8+ T cell stimulation without disrupting their anti-tumor capacity. This report is the first demonstration that siTCR technology is effective in preventing GVHD. Adoptive cell therapy with allogeneic T cells engineered with siTCR vector may be useful in developing an "off-the-shelf" therapy for patients with malignancy.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Neoplasias , Ratones , Animales , Humanos , ARN Interferente Pequeño/genética , Células Alogénicas/metabolismo , Ratones SCID , Receptores de Antígenos de Linfocitos T , Genes Codificadores de los Receptores de Linfocitos T , Inmunoterapia Adoptiva , Neoplasias/genética , Enfermedad Injerto contra Huésped/prevención & control
4.
J Transl Med ; 21(1): 601, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679754

RESUMEN

BACKGROUND: Cell-based strategies focusing on replacement or protection of dopaminergic neurons have been considered as a potential approach to treat Parkinson's disease (PD) for decades. However, despite promising preclinical results, clinical trials on cell-therapy for PD reported mixed outcomes and a thorough synthesis of these findings is lacking. We performed a systematic review and meta-analysis to evaluate cell-therapy for PD patients. METHODS: We systematically identified all clinical trials investigating cell- or tissue-based therapies for PD published before July 2023. Out of those, studies reporting transplantation of homogenous cells (containing one cell type) were included in meta-analysis. The mean difference or standardized mean difference in quantitative neurological scale scores before and after cell-therapy was analyzed to evaluate treatment effects. RESULTS: The systematic literature search revealed 106 articles. Eleven studies reporting data from 11 independent trials (210 patients) were eligible for meta-analysis. Disease severity and motor function evaluation indicated beneficial effects of homogenous cell-therapy in the 'off' state at 3-, 6-, 12-, or 24-month follow-ups, and for motor function even after 36 months. Most of the patients were levodopa responders (61.6-100% in different follow-ups). Cell-therapy was also effective in improving the daily living activities in the 'off' state of PD patients. Cells from diverse sources were used and multiple transplantation modes were applied. Autografts did not improve functional outcomes, while allografts exhibited beneficial effects. Encouragingly, both transplantation into basal ganglia and to areas outside the basal ganglia were effective to reduce disease severity. Some trials reported adverse events potentially related to the surgical procedure. One confirmed and four possible cases of graft-induced dyskinesia were reported in two trials included in this meta-analysis. CONCLUSIONS: This meta-analysis provides preliminary evidence for the beneficial effects of homogenous cell-therapy for PD, potentially to the levodopa responders. Allogeneic cells were superior to autologous cells, and the effective transplantation sites are not limited to the basal ganglia. PROSPERO registration number: CRD42022369760.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/terapia , Levodopa , Trasplante Autólogo , Trasplante Homólogo , Células Alogénicas
5.
Blood Adv ; 7(16): 4660-4670, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37276081

RESUMEN

The measurable residual disease (MRD) assessment provides an attractive predictor of allogeneic hematopoietic cell transplnat (alloHCT) outcomes. Cell-free DNA (cfDNA) has been applied to diagnosis, early detection, and disease burden monitoring in various tumors, but its utility as an MRD test in myeloid malignancies has not been systematically evaluated. We sought to determine the differential sensitivity between bone marrow (BM) and cfDNA MRD and to assess the effect of cfDNA MRD on alloHCT outcomes. The technical and clinical validation cohorts, including 82 patients participating in clinical trials (Bone Marrow Transplant Clinical Trials Network-0201 and 0402), were used. Ultradeep error-corrected targeted sequencing was performed on plasma and BM-derived DNA. We demonstrated that 94.6% (range, 93.9-95.3) of cfDNA was derived from hematopoietic tissue. The mutant allele fraction was congruent between BM and cfDNA (rho = 0.8; P < .0001); however, cfDNA seemed to be more sensitive in detecting clones with a variant allele frequency (VAF) of <0.26%. cfDNA-MRD clearance by day 90 after alloHCT (D90) was associated with improved relapse-free survival (RFS, median survival not reached vs 5.5 months; P < .0001) and overall survival (OS, median survival not reached vs 7.3 months; P < .0001) when compared with patients with persistent MRD. Irrespective of pre-alloHCT MRD, D90 cfDNA MRD was associated with inferior 2-year OS (16.7% vs 84.8%; P < .0001) and RFS (16.7% vs 80.7%; P < .0001). cfDNA seems to be an accurate, minimally invasive alternative to BM aspirates in MRD assessment and confers important prognostic implications in patients with myeloid malignancies undergoing alloHCT.


Asunto(s)
Ácidos Nucleicos Libres de Células , Trasplante de Células Madre Hematopoyéticas , Humanos , Alelos , Células Alogénicas , Células Clonales , Neoplasia Residual/diagnóstico
6.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37047179

RESUMEN

Intravitreal transplantation of allogeneic human retinal progenitor cells (hRPCs) holds promise as a treatment for blinding retinal degenerations. Prior work has shown that neural progenitors are well-tolerated as allografts following single injections; however, sequential delivery of allogeneic cells raises the potential risk of host sensitization with subsequent immune rejection of grafts. The current study was designed to assess whether an immune response would be induced by repeated intravitreal transplants of allogeneic RPCs utilizing the mouse animal model. We injected murine retinal progenitor cells (gmRPCs), originally derived from donors with a C57BL/6 genetic background, into BALB/c recipient mice in order to provide safety data as to what might be expected following repeated treatment of patients with allogeneic human cell product. Immune responses to gmRPCs were mild, consisting of T cells, B cells, neutrophils, and natural killer cells, with macrophages clearly the predominating. Animals treated with repeat doses of gmRPCs did not show evidence of sensitization, nor was there immune-mediated destruction of the grafts. Despite the absence of immunosuppressive treatments, allogeneic gmRPC grafts survived following repeat dosing, thus providing support for the preliminary observation that repeated injection of allogeneic RPCs to the vitreous cavity is tolerated in patients with retinitis pigmentosa.


Asunto(s)
Células Alogénicas , Trasplante de Células Madre Hematopoyéticas , Animales , Ratones , Humanos , Ratones Endogámicos C57BL , Inmunidad , Ratones Endogámicos BALB C , Rechazo de Injerto
7.
PLoS One ; 18(2): e0282238, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36854030

RESUMEN

Mesenchymal stem cell-derived exosomes regulate cell migration, proliferation, differentiation, and synthesis of the extracellular matrix, giving great potential for the treatment of different diseases. The ultracentrifugation method is the gold standard method for exosome isolation due to the simple protocol, and high yield, but presents low purity and requires specialized equipment. Amelioration of technical optimization is required for quick and reliable confinement of exosomes to translate them to the clinic as cell therapeutics In this study, we hypothesized that magnetically activated cell sorting may provide, an effective, reliable, and rapid tool for exosome isolation when compared to ultracentrifugation. We, therefore, aimed to compare the efficiency of magnetically activated cell sorting and ultracentrifugation for human mesenchymal stem cell-derived exosome isolation from culture media by protein quantification, surface biomarker, size, number, and morphological analysis. Magnetically activated cell sorting provided a higher purity and amount of exosomes that carry visible magnetic beads when compared to ultracentrifugation. The particle number of the magnetically activated cell sorting group was higher than the ultracentrifugation. In conclusion, magnetically activated cell sorting presents a quick, and reliable method to collect and present human mesenchymal stem cell exosomes to clinics at high purity for potential cellular therapeutic approaches. The novel isolation and purification method may be extended to different clinical protocols using different autogenic or allogeneic cell sources.


Asunto(s)
Exosomas , Humanos , Separación Celular , Células Alogénicas , Instituciones de Atención Ambulatoria , Ultracentrifugación
8.
Blood ; 141(8): 869-876, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36347021

RESUMEN

T cells expressing chimeric antigen receptors (CARs) have achieved major clinical success in patients with hematologic malignancies. However, these treatments remain largely ineffective for solid cancers and require significant time and resources to be manufactured in an autologous setting. Developing alternative immune effector cells as cancer immunotherapy agents that can be employed in allogeneic settings is crucial for the advancement of cell therapy. Unlike T cells, Vα24-invariant natural killer T cells (NKTs) are not alloreactive and can therefore be generated from allogeneic donors for rapid infusion into numerous patients without the risk of graft-versus-host disease. Additionally, NKT cells demonstrate inherent advantages over T-cell products, including the ability to traffic to tumor tissues, target tumor-associated macrophages, transactivate NK cells, and cross-prime tumor-specific CD8 T cells. Both unmodified NKTs, which specifically recognize CD1d-bound glycolipid antigens expressed by certain types of tumors, and CAR-redirected NKTs are being developed as the next generation of allogeneic cell therapy products. In this review, we describe studies on the biology of NKTs and other types of innate-like T cells and summarize the clinical experiences of unmodified and CAR-redirected NKTs, including recent interim reports on allogeneic NKTs.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células T Asesinas Naturales , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Células Alogénicas , Neoplasias/terapia , Células Asesinas Naturales , Inmunoterapia Adoptiva
9.
Cytotherapy ; 25(1): 1-13, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36109321

RESUMEN

Advances in cellular reprogramming and gene-editing approaches have opened up the potential for a new class of ex vivo cell therapies based on genetically engineered, induced pluripotent stem cell (iPSC)-derived allogeneic cells. While these new therapies share some similarities with their primary cell-derived autologous and allogeneic cell therapy predecessors, key differences exist in the processes used for generating genetically engineered, iPSC-derived allogeneic therapies. Specifically, in iPSC-derived allogeneic therapies, donor selection and gene-editing are performed once over the lifetime of the product as opposed to as part of the manufacturing of each product batch. The introduction of a well-characterized, fully modified, clonally derived master cell bank reduces risks that have been inherent to primary-cell derived autologous and allogeneic therapies. Current regulatory guidance, which was largely developed based on the learnings gained from earlier generation therapies, leaves open questions around considerations for donor eligibility, starting materials and critical components, cell banking and genetic stability. Here, a risk-based approach is proposed to address these considerations, while regulatory guidance continues to evolve.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes Inducidas/metabolismo , Células Alogénicas , Diferenciación Celular , Reprogramación Celular , Línea Celular
10.
Sci Rep ; 12(1): 18072, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302875

RESUMEN

This study aims to clarify the immunogenicity in acquired and innate immune responses of cultured human corneal endothelial cells (hCECs) applied for cell injection therapy, a newly established modality for corneal endothelium failures. Thirty-four patients with corneal endothelial failure received injection of allogeneic hCEC suspension into anterior chamber. No sign of immunological rejection was observed in all 34 patients during the 5-8 years postoperative follow-up period. Cell injection therapy was successful in 2 patients treated for endothelial failure after penetrating keratoplasty and one patient with Descemet membrane stripping automated endothelial keratoplasty failure. ELISPOT assays performed in allo-mixed lymphocyte reaction to the alloantigen identical to that on the injected hCECs, elicited sparse IFN-γ-specific spots in the peripheral blood mononuclear cells of patients who received hCEC injection. The therapy generated simple and smooth graft-host junctions without wound stress. The injection of C57BL/6 CECs into the anterior chamber of BALB/c mice, which rejected C57BL/6 corneas 6 weeks ago, induced no sign of inflammatory reactions after the second challenge of alloantigen. Collectively, injection of the hCEC cell suspension in the aqueous humor induces immune tolerance that contributes to the survival of the reconstituted endothelium.


Asunto(s)
Enfermedades de la Córnea , Endotelio Corneal , Ratones , Animales , Humanos , Células Alogénicas , Células Endoteliales , Leucocitos Mononucleares , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Isoantígenos , Inmunidad , Enfermedades de la Córnea/cirugía
11.
Stem Cells Transl Med ; 11(1): 59-72, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35641169

RESUMEN

BACKGROUND: Left ventricular hypertrophy and heart failure with preserved ejection fraction (HFpEF) are primary manifestations of the cardiorenal syndrome in patients with chronic kidney disease (CKD). Therapies that improve morbidity and mortality in HFpEF are lacking. Cell-based therapies promote cardiac repair in ischemic and non-ischemic cardiomyopathies. We hypothesized that cell-based therapy ameliorates CKD-induced HFpEF. METHODS AND RESULTS: Yorkshire pigs (n = 26) underwent 5/6 embolization-mediated nephrectomy. CKD was confirmed by increased creatinine and decreased glomerular filtration rate (GFR). Mean arterial pressure (MAP) was not different between groups from baseline to 4 weeks. HFpEF was evident at 4 weeks by increased LV mass, relative wall thickening, end-diastolic pressure, and end-diastolic pressure-volume relationship, with no change in ejection fraction (EF). Four weeks post-embolization, allogeneic (allo) bone marrow-derived mesenchymal stem cells (MSC; 1 × 107 cells), allo-kidney-derived stem cells (KSC; 1 × 107 cells), allo-cell combination therapy (ACCT; MSC + KSC; 1:1 ratio; total = 1 × 107 cells), or placebo (Plasma-Lyte) was delivered via intra-renal artery. Eight weeks post-treatment, there was a significant increase in MAP in the placebo group (21.89 ± 6.05 mmHg) compared to the ACCT group. GFR significantly improved in the ACCT group. EF, relative wall thickness, and LV mass did not differ between groups at 12 weeks. EDPVR improved in the ACCT group, indicating decreased ventricular stiffness. CONCLUSIONS: Intra-renal artery allogeneic cell therapy was safe in a CKD swine model manifesting the characteristics of HFpEF. The beneficial effect on renal function and ventricular compliance in the ACCT group supports further research of cell therapy for cardiorenal syndrome.


Asunto(s)
Síndrome Cardiorrenal , Insuficiencia Cardíaca , Fallo Renal Crónico , Insuficiencia Renal Crónica , Células Alogénicas , Animales , Síndrome Cardiorrenal/terapia , Enfermedad Crónica , Insuficiencia Cardíaca/terapia , Humanos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia , Volumen Sistólico , Porcinos
12.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328732

RESUMEN

Background: Cardiovascular surgery is confronted by a lack of suitable materials for patch repair. Acellular animal tissues serve as an abundant source of promising biomaterials. The aim of our study was to explore the bio-integration of decellularized or recellularized pericardial matrices in vivo. Methods: Porcine (allograft) and ovine (heterograft, xenograft) pericardia were decellularized using 1% sodium dodecyl sulfate ((1) Allo-decel and (2) Xeno-decel). We used two cell types for pressure-stimulated recellularization in a bioreactor: autologous adipose tissue-derived stromal cells (ASCs) isolated from subcutaneous fat of pigs ((3) Allo-ASC and (4) Xeno-ASC) and allogeneic Wharton's jelly mesenchymal stem cells (WJCs) ((5) Allo-WJC and (6) Xeno-WJC). These six experimental patches were implanted in porcine carotid arteries for one month. For comparison, we also implanted six types of control patches, namely, arterial or venous autografts, expanded polytetrafluoroethylene (ePTFE Propaten® Gore®), polyethylene terephthalate (PET Vascutek®), chemically stabilized bovine pericardium (XenoSure®), and detoxified porcine pericardium (BioIntegral® NoReact®). The grafts were evaluated through the use of flowmetry, angiography, and histological examination. Results: All grafts were well-integrated and patent with no signs of thrombosis, stenosis, or aneurysm. A histological analysis revealed that the arterial autograft resembled a native artery. All other control and experimental patches developed neo-adventitial inflammation (NAI) and neo-intimal hyperplasia (NIH), and the endothelial lining was present. NAI and NIH were most prominent on XenoSure® and Xeno-decel and least prominent on NoReact®. In xenografts, the degree of NIH developed in the following order: Xeno-decel > Xeno-ASC > Xeno-WJC. NAI and patch resorption increased in Allo-ASC and Xeno-ASC and decreased in Allo-WJC and Xeno-WJC. Conclusions: In our setting, pre-implant seeding with ASC or WJC had a modest impact on vascular patch remodeling. However, ASC increased the neo-adventitial inflammatory reaction and patch resorption, suggesting accelerated remodeling. WJC mitigated this response, as well as neo-intimal hyperplasia on xenografts, suggesting immunomodulatory properties.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Remodelación Vascular , Células Alogénicas , Animales , Prótesis Vascular , Arterias Carótidas , Bovinos , Humanos , Hiperplasia , Pericardio , Ovinos , Porcinos , Ingeniería de Tejidos
13.
Dev Dyn ; 251(9): 1472-1489, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34114716

RESUMEN

BACKGROUND: During development, complex organ patterns emerge through the precise temporal and spatial specification of different cell types. On an evolutionary timescale, these patterns can change, resulting in morphological diversification. It is generally believed that homologous anatomical structures are built-largely-by homologous cell types. However, whether a common evolutionary origin of such cell types is always reflected in the conservation of their intrinsic transcriptional specification programs is less clear. RESULTS: Here, we developed a user-friendly bioinformatics workflow to detect gene co-expression modules and test for their conservation across developmental stages and species boundaries. Using a paradigm of morphological diversification, the tetrapod limb, and single-cell RNA-sequencing data from two distantly related species, chicken and mouse, we assessed the transcriptional dynamics of homologous cell types during embryonic patterning. With mouse limb data as reference, we identified 19 gene co-expression modules with varying tissue or cell type-restricted activities. Testing for co-expression conservation revealed modules with high evolutionary turnover, while others seemed maintained-to different degrees, in module make-up, density or connectivity-over developmental and evolutionary timescales. CONCLUSIONS: We present an approach to identify evolutionary and developmental dynamics in gene co-expression modules during patterning-relevant stages of homologous cell type specification using single-cell RNA-sequencing data.


Asunto(s)
Células Alogénicas , Transcriptoma , Animales , Evolución Biológica , Extremidades , Ratones , ARN
14.
Blood ; 139(8): 1177-1183, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-34797911

RESUMEN

Natural killer (NK) cells are a promising alternative to T cells for cancer immunotherapy. Adoptive therapies with allogeneic, cytokine-activated NK cells are being investigated in clinical trials. However, the optimal cytokine support after adoptive transfer to promote NK cell expansion, and persistence remains unclear. Correlative studies from 2 independent clinical trial cohorts treated with major histocompatibility complex-haploidentical NK cell therapy for relapsed/refractory acute myeloid leukemia revealed that cytokine support by systemic interleukin-15 (IL-15; N-803) resulted in reduced clinical activity, compared with IL-2. We hypothesized that the mechanism responsible was IL-15/N-803 promoting recipient CD8 T-cell activation that in turn accelerated donor NK cell rejection. This idea was supported by increased proliferating CD8+ T-cell numbers in patients treated with IL-15/N-803, compared with IL-2. Moreover, mixed lymphocyte reactions showed that IL-15/N-803 enhanced responder CD8 T-cell activation and proliferation, compared with IL-2 alone. Additionally, IL-15/N-803 accelerated the ability of responding T cells to kill stimulator-derived memory-like NK cells, demonstrating that additional IL-15 can hasten donor NK cell elimination. Thus, systemic IL-15 used to support allogeneic cell therapy may paradoxically limit their therapeutic window of opportunity and clinical activity. This study indicates that stimulating patient CD8 T-cell allo-rejection responses may critically limit allogeneic cellular therapy supported with IL-15. This trial was registered at www.clinicaltrials.gov as #NCT03050216 and #NCT01898793.


Asunto(s)
Antineoplásicos/administración & dosificación , Linfocitos T CD8-positivos/inmunología , Trasplante de Células Madre Hematopoyéticas , Inmunoterapia Adoptiva , Interleucina-15/administración & dosificación , Células Asesinas Naturales/trasplante , Leucemia Mieloide Aguda , Proteínas Recombinantes de Fusión/administración & dosificación , Células Alogénicas/inmunología , Femenino , Humanos , Interleucina-15/inmunología , Células Asesinas Naturales/inmunología , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Masculino
15.
J Ethnopharmacol ; 285: 114918, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34919989

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Angelicae pubescentis radix (APR) has a long history in the treatment of rheumatoid arthritis (RA) in China. It has the effects of dispelling wind to eliminate dampness, removing arthralgia and stopping pain in the Chinese Pharmacopeia, but its mechanisms was unclear. Columbianadin (CBN) was one of the main bioactive compounds of APR, and has many pharmacological effects. But the immunosuppressive effect of CBN on DCs and the potential mechanism needed to be explored. AIM OF THE STUDY: The study was aimed to clarify the immunosuppressive effect of CBN on maturation, migration, allogenic T cell stimulation and phagocytosis capacity of TNF-α induced DCs. MATERIALS AND METHODS: Bone marrow-derived DCs were obtained and cultured from C57BL/6 mice in accordance with protocol. The phenotypic study (CD11c, CD40, CD80, CD86 and MHC Ⅱ) were measured by flow cytometry. FITC-dextran were uptaked by DCs and the change of endocytosis activity were mediated by acquired mannose receptor. Transwell chambers were used to detect the migration ability of DCs. Mixed leukocyte reaction (MLR) assay was used to detect the allostimulatory ability of CBN on TNF-α stimulated DCs. The secretion of cytokines and chemokines was measured by ELISA Kit. TLRs gene and MAPKs/NF-κB protein expression were checked by qRT-PCR and Western blot. RESULTS: CBN inhibited the maturation of TNF-α-induced DCs while maintaining phagocytosis capabilities. Additionally, CBN inhibited the migration of TNF-α stimulated DCs, which related to reduce the production of chemokines (MCP-1, MIP-1α). Notably, CBN could suppress the proliferation of CD4+T cells by inhibiting DCs maturation, and decrease the proinflammatory cytokines IL-6 production. Furthermore, CBN inhibited mRNA expression of TLR2, TLR7 and TLR9 in TNF-α-activated DCs. Meanwhile, the phosphorylation of p38, JNK1/2 and NF-κB protein were significantly inhibited in CBN treated DCs. CONCLUSIONS: These findings provided novel insights into the pharmacological activity of CBN. They also indicated that inhibition DCs maturation owning to the immunosuppressive effect of CBN. CBN was expected as a potential immunosuppressant and TLRs/MAPKs/NF-κB pathway may be an important mechanism for CBN's immunosuppressive activity.


Asunto(s)
Células Alogénicas/fisiología , Movimiento Celular/efectos de los fármacos , Cumarinas/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/fisiología , Linfocitos T/fisiología , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Fagocitosis , Fitoterapia , Receptores Toll-Like
16.
Cells ; 10(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34944002

RESUMEN

Cell-based cancer immunotherapy has revolutionized the treatment of hematological malignancies. Specifically, autologous chimeric antigen receptor-engineered T (CAR-T) cell therapies have received approvals for treating leukemias, lymphomas, and multiple myeloma following unprecedented clinical response rates. A critical barrier to the widespread usage of current CAR-T cell products is their autologous nature, which renders these cellular products patient-selective, costly, and challenging to manufacture. Allogeneic cell products can be scalable and readily administrable but face critical concerns of graft-versus-host disease (GvHD), a life-threatening adverse event in which therapeutic cells attack host tissues, and allorejection, in which host immune cells eliminate therapeutic cells, thereby limiting their antitumor efficacy. In this review, we discuss recent advances in developing stem cell-engineered allogeneic cell therapies that aim to overcome the limitations of current autologous and allogeneic cell therapies, with a special focus on stem cell-engineered conventional αß T cells, unconventional T (iNKT, MAIT, and γδ T) cells, and natural killer (NK) cells.


Asunto(s)
Inmunoterapia , Leucocitos/citología , Neoplasias/inmunología , Neoplasias/terapia , Células Madre/citología , Células Alogénicas/citología , Animales , Ingeniería Celular , Humanos
17.
Front Immunol ; 12: 727814, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925312

RESUMEN

Posttransplant smooth muscle tumors (PTSMTs) are rare Epstein-Barr virus (EBV)-associated neoplasms, mostly occurring after solid organ transplantation. Current therapeutic strategies include surgery and reduction of immunosuppressive medication. We describe for the first time a novel treatment approach for PTSMT by adoptive cell transfer (ACT) of EBV-specific T cells to a 20-year-old patient with a medical history of cardiac transplantation, posttransplant lymphoproliferative disease, and multilocular PTSMT. During ACT, mild cytokine release syndrome occurred, while no unexpected safety signals were recorded. We observed in vivo expansion of EBV-specific T cells and reduction of EBV viremia. Best response was stable disease after 4 months with reduction of EBV viremia and normalization of lactate dehydrogenase levels. ACT with EBV-specific T cells may be a safe and efficacious therapeutic option for PTSMT that warrants further exploration.


Asunto(s)
Traslado Adoptivo/efectos adversos , Células Alogénicas/inmunología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/terapia , Trasplante de Corazón/efectos adversos , Herpesvirus Humano 4/inmunología , Tumor de Músculo Liso/complicaciones , Tumor de Músculo Liso/terapia , Linfocitos T/inmunología , Traslado Adoptivo/métodos , Infecciones por Virus de Epstein-Barr/virología , Femenino , Humanos , Trastornos Linfoproliferativos/etiología , Tumor de Músculo Liso/etiología , Trasplante Homólogo , Resultado del Tratamiento , Viremia/complicaciones , Viremia/terapia , Adulto Joven
18.
Front Immunol ; 12: 732135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925314

RESUMEN

Natural killer cells (NK cells) are the first line of the innate immune defense system, primarily located in peripheral circulation and lymphoid tissues. They kill virally infected and malignant cells through a balancing play of inhibitory and stimulatory receptors. In pre-clinical investigational studies, NK cells show promising anti-tumor effects and are used in adoptive transfer of activated and expanded cells, ex-vivo. NK cells express co-stimulatory molecules that are attractive targets for the immunotherapy of cancers. Recent clinical trials are investigating the use of CAR-NK for different cancers to determine the efficiency. Herein, we review NK cell therapy approaches (NK cell preparation from tissue sources, ways of expansion ex-vivo for "off-the-shelf" allogeneic cell-doses for therapies, and how different vector delivery systems are used to engineer NK cells with CARs) for cancer immunotherapy.


Asunto(s)
Células Alogénicas/inmunología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/inmunología , Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Ingeniería Celular/métodos , Sangre Fetal/citología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neoplasias/inmunología , Receptores Quiméricos de Antígenos/genética , Resultado del Tratamiento
19.
Bull Cancer ; 108(10S): S73-S80, 2021 Oct.
Artículo en Francés | MEDLINE | ID: mdl-34920810

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy represents a major breakthrough in the field of hematology. "Off-the-shelf" allogeneic CAR T-cells from donors have many potential advantages over autologous approaches, such as the immediate availability of cryopreserved batches, possible standardization of the cell product, time for multiple cell modifications, redosing and decreased cost. However, allogeneic T-cells possess foreign immunological identities that can lead to graft-versus-host disease (GvHD) and their rejection by the host immune system. In this review, we describe the different approaches to produce allogeneic CAR T-cells with limited potential for GvHD and that can persist in the recipient. The preliminary clinical results obtained with the first generation of allogeneic CAR T-cells are presented as well as the perspectives in hematological malignancies and solid tumors.


Asunto(s)
Células Alogénicas/citología , Enfermedad Injerto contra Huésped/prevención & control , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/trasplante , Células Alogénicas/inmunología , Bancos de Muestras Biológicas , Edición Génica/métodos , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Enfermedad Injerto contra Huésped/inmunología , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/terapia , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/trasplante , Depleción Linfocítica , Células T de Memoria/inmunología , Células T de Memoria/trasplante , Neoplasias/inmunología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/citología , Linfocitos T/inmunología
20.
Bull Cancer ; 108(10S): S81-S91, 2021 Oct.
Artículo en Francés | MEDLINE | ID: mdl-34920811

RESUMEN

Immunotherapy with chimeric antigen receptor engineered-T cells (CAR-T) has revolutionized the landscape of treatment of relapsed or refractory B-cell. However, the use of autologous T cells has limitations: variable quality of collected effector T cells, duration of the process sometimes incompatible with uncontrolled hemopathy, limited number of available CAR cells, sometimes fatal toxicities, extremely high cost. Natural Killer (NK) cells are an interesting alternative to T cells. NK cells are very powerful cytotoxic effectors that have demonstrated an anti-tumor effect after haploidentical hematopoietic stem cells transplantation or in adoptive cell therapy against a number of solid or hematological tumors. Mainly, they can be used in allogeneic situations without causing major toxic side effects. The sources of NK cells are multiple: cell line, cord blood, peripheral blood, induced pluripotent stem cells. Recent advances in manufacturing engineered CAR-NK cells make it possible to promote antibody-dependent cell-mediated cytotoxicity (ADCC), as well as the activation and persistence of these cells, notably via the cytokine Il-15. The majority of the reports on CAR-NK cells concern pre-clinical or early clinical trials. However, the many advantages of "off-the-shelf" allogeneic CAR-NK cells provide great potential in cancer treatments.


Asunto(s)
Células Alogénicas , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/trasplante , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/trasplante , Células Alogénicas/citología , Células Alogénicas/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Células Sanguíneas , Ingeniería Celular , Línea Celular , Sangre Fetal/citología , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/terapia , Trasplante de Células Madre Hematopoyéticas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos T/citología , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...